Ron B. Davis Jr.
Description
Professor Davis introduces you to ribose, the central component of both RNA and DNA. Starting from individual molecules and motifs, you'll progressively work your way up toward a full model for the structure of the sub-units involved in our genetic code. This lecture is proof of organic chemistry's powerful role in establishing who you are.
Description
Continue exploring oxygen's role in organic chemistry. Here, Professor Davis introduces you to the properties and reactivity of two simple carbonyl compounds: aldehydes and ketones. What do we know about these oxygen-containing compounds and their chemistry? And what's their curious connection with how you feel after a night of heavy drinking?
Description
Complete your survey of organic compounds with the largest organic molecules of all: polymers. To better understand this versatile class of compounds, you'll learn about the two general classes of polymers (addition and condensation), how they're designed, and how they've changed the world (one example: vulcanized rubber).
Description
Get a taste of one of the favorite challenges for organic chemists - turning one organic compound into another. Focus on three types of reactions from the many used in organic synthesis: substitution, elimination, and addition. Close by considering the vital role of water in organic chemistry.
Description
Visit the radio portion of the electromagnetic spectrum for insights into how tiny, atom-sized magnets in organic molecules interact with radio waves (and each other) to produce a complex set of magnetic resonances - which are one of the gold-standard identification tools used in modern organic chemistry. Topics include Zeeman splitting, magnetic spin-spin coupling, and multiplets.
Description
In this final lecture on spectroscopic techniques, discover the importance of modern NMR spectrometers, which use superconducting magnets and radio receivers to collect spectra with more speed and precision (and in different ways) than other techniques. Also, get an intriguing lesson in the human element - and limitations - involved in spectroscopy.
Description
Investigate some of the key methods scientists employ to communicate the right structural information about molecular compounds, including their identity, the ratio of elements that comprise them, and their connectivity. Explore Fischer projections, Newman projections, and stereoimages - all of which help us overcome the challenges of conveying the three-dimensional positions of atoms.
Description
Turn now to nitrogen, which has played an important role in the chemistry of life since it began. Learn the chemistry of primary, secondary, and tertiary amines, the simplest of nitrogen-containing compounds. Also, consider imines (containing a pi-bond to nitrogen) and nitriles (where two pi bonds are present), including the simplest and most well-known nitrile: hydrogen cyanide.
Description
Now turn to liquids, which have a more complicated behavior than gases. The same intermolecular forces apply to both, but at much closer range for liquids. Explore the resulting properties, including viscosity, volatility, incompressibility, and miscibility. Also consider applications of these qualities.
Description
Discover how solubility makes for an extremely effective tool for isolating non-volatile organic compounds through liquid-liquid and solid-liquid extractions (part of a larger phenomenon known as partitioning). As you delve into these processes, you'll learn one way to better understand extractions: making a perfect cup of tea.
Description
Starting with hydrogen, see how electrons organize themselves within the atom, depending on their energy state. Graduate from Niels Bohr's revolutionary model of the atom to Erwin Schrödinger's even more precise theory. Then, chart different electron configurations in heavier and heavier atoms.
Description
Encounter reduction-oxidation (redox) reactions, which involve the exchange of electrons between substances. Discover that this process explains geological events on the early Earth, including why iron in its metallic state is so rare in nature. Then explore associated phenomena, including the activity series of metals.
Description
Survey the types of chemicals that can harm human health. First, analyze the differences between a poison, a toxin, and a venom. Then, study examples of each, learning how arsenic disrupts ATP production, what makes nicotine deadlier than most people realize, and why venoms are typically complex proteins.